Coordinates with metals producing reactive oxygen species which causes oxidative damage to DNA¹ and RNA². Induces double-strand DNA damage³. Commonly used to induce lung fibrosis in animal disease models⁴,⁵. Anticancer agent in clinical use⁶.

1) Petering et al. (1990), *The role of redox-active metals in the mechanism of action of bleomycin*; Chem. Biol. Interact., 73 133
2) Huttenhofer et al. (1992), *Cleavage of tRNA by Fe(II)-bleomycin*; J. Biol. Chem., 267 24471
3) Lee et al. (2017), *ASF1α Promotes Non-homologous End Joining Repair by Facilitating Phosphorylation of MDC1 by ATM at Double-Strand Breaks*; Mol. Cell 68 61
6) Tanaka et al. (2008) *Increased glutathione level is not involved in enhanced bleomycin sensitivity in cisplatin-resistant 2780CP cells*; Anticancer Res., 28 2663

PHYSICAL DATA

- **Molecular Weight:** 1512.62
- **Molecular Formula:** C₅₅H₈₅N₁₇O₂₅S₄
- **Purity:** Contains a mixture of A₂ (~70%) and B₂ (~30%) forms
- **NMR:** (Conforms)
- **Solubility:** Water (20 mg/ml)
- **Physical Description:** White or off-white solid
- **Storage and Stability:** Store as supplied, desiccated at -20°C for up to 1 year from the date of purchase. Solutions in distilled water may be stored at -20°C for up to 3 months.

Materials provided by Focus Biomolecules are for laboratory research use only and are not intended for human or veterinary applications.

Focus Biomolecules LLC 400 Davis Drive, Suite 600 Plymouth Meeting PA 19462
www.focusbiomolecules.com