Catalog \# 10-1469
ML297
CAS\# 1443246-62-5
N -(3.4-Difluorophenyl)-n'-(3-methyl-1-phenyl-1H-pyrazol-5-yl)urea
VU0456810
Lot \# S101107

Selective GIRK $1 / 2\left(\mathrm{~K}_{\mathrm{ir}} 3.1 / 3.2\right)$ channel activator, $\mathrm{IC}_{50}=160$, 887 and 914 nM for GIRK1/2, GIRK1/4 and GIRK1/3 respectively. Has no effect on GIRK2, GIRK2/3, $\mathrm{K}_{\mathrm{i} r} 2.1$ and $\mathrm{K}_{\mathrm{v}} 7.4$ channels. ${ }^{1,2}$ Displays antiseizure activity 2 and decreases anxiety-related behavior without sedative or addictive effects ${ }^{3}$. Reduces glucose- and IBMX-stimulated GLP-1 secretion with no effect on GIP in murine L and K cells. ${ }^{4}$ Brain penetrant.

1) Wen et al. (2014), Discovery of potent and selective GIRK1/2 modulators via "molecular switches' within a series of 1-(3-cyclopropyl-1-phenyl-1H-pyrazol-5-yl)ureas; Bioorg. Med. Chem. Lett., 245102
2) Kaufmann et al. (2013), ML-297 (VU0456810), the first potent and selective activator of the GIRK otassium channel, displays antiepileptic properties in mice; ACS Chem. Neurosci., 41278
3) Wydeven et al. (2014), Mechanisms underlying the activation of G-protein-gated inwardly rectifying K+ (GIRK) channels by the novel anxiolytic drug, ML297; Proc. Natl. Acad. Sci. USA, 11110755
4) Psichas et al. (2016), Galanin inhibits GLP-1 and GIP secretion via the GAL1 receptor in enteroendocrine L and K cells; Br. J. Pharmacol., 173888

PHYSICAL DATA

Molecular Weight:	328.32
Molecular Formula:	$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}$
Purity:	98\% by TLC
	NMR: (Conforms)
Solubility:	Soluble in DMSO (up to $45 \mathrm{mg} / \mathrm{ml}$) or in Ethanol (up to $20 \mathrm{mg} / \mathrm{ml}$)
Physical Description:	White solid
Storage and Stability:	Store as supplied desiccated at $-20^{\circ} \mathrm{C}$ for up to 1 year from the date of purchase.

Materials provided by Focus Biomolecules are for laboratory research use only and are not intended for human or veterinary applications.

