Catalog \# 10-4403

Bedaquiline

CAS\# 843663-66-1
(1R,2S)-1-(6-Bromo-2-methoxyquinolin-3-yl)-4-(dimethylamino)-2-naphthalen-1-yl-1-phenylbutan-2-ol; TMC207; R207910 Lot \# FBS2130

Bedaquiline is a clinically useful antituberculosis agent that is active (MIC's 0.030 to $0.120 \mu \mathrm{~g} / \mathrm{mL}$) against multi-drug resistant strains. ${ }^{1}$ It interferes with mycobacterial energy metabolism via binding to the oligomeric subunit c (AtpE) ${ }^{2}$ and subunit ε^{3} of ATP synthase inhibiting ATP production. ${ }^{4}$ Bedaquiline has recently been found to be an inhibitor $\left(\mathrm{IC}_{50}=18.7 \mu \mathrm{M}\right)$ of the SARS-CoV-2 main protease, 3CLpro. ${ }^{5}$

1) Andries et al. (2005), A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis; Science, 307223
2) Koul et al. (2007), Diarylquinolines target subunit c of mycobacterial ATP synthase; Nat. Chem. Biol., 3323
3) Biukovic et al. (2013), Variations of subunit \{varepsilon\} of the Mycobacterium tuberculosis F1FO ATP synthase and a novel model for mechanism of action of the tuberculosis drug TMC207; Antimicrob. Agents Chemother., 57 168
4) Sarathy et al. (2019), Re-Understanding the Mechanisms of Action of the Anti-Mycobacterial Drug Bedaquiline; Antibiotics (Basel), 8261
5) Ghahremanpour et al. (2020), Identification of 14 Known Drugs as Inhibitors of the Main Protease of SARS-CoV2; ACS Med. Chem. Lett., 112526

PHYSICAL DATA

Molecular Weight:	555.50
Molecular Formula:	$\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{BrN}_{2} \mathrm{O}_{2}$
Purity:	99% by HPLC
	NMR: (Conforms)
Solubility:	DMSO $(10 \mathrm{mg} / \mathrm{ml})$

Physical Description: White solid
Storage and Stability: Store as supplied at room temperature for up to 1 year from the date of purchase. Solutions in DMSO may be stored at $-20^{\circ} \mathrm{C}$ for up to 1 month.

